La aplicación de la robótica y la realidad virtual para la mejora de la comunicación expresiva: un estudio exploratorio

Gonzalo Lorenzo Lledó, Eliseo Andreu Cabrera, Asunción Lledó Carreres, Alejandro Lorenzo-Lledó, Elena Pérez-Vázquez, Alba Gilabert-Cerdá

Abstract


Las tecnologías emergentes se han incorporado con toda celeridad en los procesos de enseñanza y aprendizaje de los niveles educativos obligatorios. Una de las razones de su utilización es la versatilidad que presentan para adaptarse a las necesidades educativas del alumnado. De manera específica nos referimos en este estudio, al alumnado con trastorno del espectro autista (TEA), presente hoy en día en las aulas, Por ello, este estudio, tiene como objetivo realizar un estudio comparativo para analizar las mejoras en la comunicación expresiva del alumnado con trastorno del espectro autista en función de la robótica y la realidad virtual inmersiva.  El estudio desarrollado ha utilizado   la metodología cuasi-experimental y un diseño pretest-posttest mediante un enfoque cuantitativo. El instrumento de evaluación ha sido el cuestionario Denver. Mientras que para la robótica se utilizó el robot NAO y las gafas Oculus Quest 2 para la realidad virtual. La intervención se desarrolló de septiembre a noviembre de 2023. Se planificaron 11 sesiones con ambas tecnologías para trabajar áreas como el juego simbólico, el aprendizaje de normas o el reconocimiento de emociones. En los resultados obtenidos se ha podido constatar mejoras con ambas tecnologías a pesar de que la robótica es la que ha conseguido unas puntuaciones mas altas. Como futura línea de trabajo, se plantea la posibilidad de añadir mas situaciones para trabajar en las aulas escolares y la incorporación de una inteligencia artificial que pueda ajustar las actividades en tiempo real a las características de los niños.


Keywords


dificultades en el aprendizaje, educación, recursos educacionales, robótica

References


Adjorlu, A., Høeg, E.R., Mangano, L., Serafin, S. (2017). Daily living skills training in virtual reality to help children with autism spectrum disorder in a real shopping scenario. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) (pp.294-302). IEEE: USA.

Alfalah, S. (2018) Perceptions toward adopting virtual reality as a teaching aid in information technology. Education and Information Technologies, 23(6), 2633–2653. https://doi.org/10.1007/s10639-018-9734-2

Anzalone, S., Tilmont, E., Boucenna, S., Xavier, J., Jouen, A., Bodeau, N., Maharatna, K., Chetouani, M. & Cohen, D. (2014). How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D + time) environment during a joint attention induction task with a robot. Research in Autism Spectrum Disoders, 8(7), 814-826. https://doi.org/10.1016/j.rasd.2014.03.002

Anzalone, S., Xavier, J., Boucenna, S., Billeci, L., Narzisi, A., Muratori, F., Cohen, D. & Choetouani, M. (2019). Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recognition Letters,118(1), 42–50. https:// doi. org/ 10. 1016/j. patrec. 2018. 03. 007

Bradley, R. & Newbutt, N. (2018). Autism and virtual reality head-mounted displays: A state of the art systematic review. Journal of Enabling Technologies,12(3), 101–113.https://doi.org/10.1108/JET-01-2018-0004

Bosetti, C., Ferrini, L., Ferrari, A., Bartolini, E. & Calderoni, S. (2023). Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. Journal of Clinical Medicine, 13(1), 279. https://doi.org/10.3390/jcm13010279

Dahiya, A. V., McDonnell, C., DeLucia, E., & Scarpa, A. (2020). A systematic review of remote telehealth assessments for early signs of autism spectrum disorder: Video and mobile applications. Practice Innovations, 5(2), 150–164. https://doi.org/10.1037/pri0000121

Delbruck, E., Yang, M., Yassine, A., & Grossman, E. D. (2019). Functional connectivity in ASD: Atypical pathways in brain networks supporting action observation and joint attention. Brain Research, 1706, 157–165. https://doi.org/10.1016/j.brainres.2018.10.029

Cao, H., Simut, R., Krepel, N., Vanderborght, B., & Vanderfaeillie, J. (2022). Could NAO robot function as model demonstrating joint attention skills for children with autism spectrum disorder? An exploratory study. International Journal of Humanoid Robotics,19(4), 1–21. https:// doi. org/ 10. 1142/ S0219 84362 24000 60

Feil-Seifer, D. & Mataric, M. (2005). Defining socially assistive robotics. In 9th international conference on rehabilitation robotics, ICORR 2005 (pp. 465–468). IEEE. 10.1109/ICORR.2005.1501143

Garau, M., Slater, M., Pertaub, D. P. y Razzaque, S. (2005). The responses of people to virtual humans in an immersive virtual environment. Presence: Teleoperators and Virtual Environments, 14, 104-116. http://dx.doi.org/10.1162/1054746053890242.

Ingersoll, B. y Wainer, A. (2013). Initial efficacy of project ImPACT: A parent-mediated social communication intervention for young children with ASD. Journal of Autism and Developmental Disorders, 43(12), 2943–2952.http://doi.org/ 10.1007/s10803-013-1840-9

Kim, E.S., Berkovits, L.D., Bernier, E.P., Leyzberg, D., Shic, F., Paul, R., & Scassellati, B. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism Development Disorder, 43, 1038–1049. doi: 10.1007/s10803-012-1645-2.

Kumazaki, H., Muramatsu, T., Yoshikawa, Y., Corbett, B., Matsumoto, Y., Higashida, H., Yuhi, T., Ishiguro, H., Mimura, M & Kikuchi, M. (2019). Job interview training targeting nonverbal communication using an android robot for individuals with autism spectrum disorder. Autism, 23(6), 1343-1608. https://doi.org/10.1177/136236131982713

Lorenzo, G., Pomares, J. & Lledó, A. (2013). Inclusion of immersive virtual learning environments and visual control systems to support the learning of students with Asperger Syndrome. Computers & Education, 62(11), 88-101. 10.1016/j.compedu.2012.10.028

Lorenzo, G., Lledó, A., Pomares, J. & Roig-Vila, R. (2016). Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Computers and Education, 98(1), 192-205.https://doi.org/10.1016/j.compedu.2016.03.018

Lorenzo, G., Lorenzo-Lledó, A., Lledó Carreres, A., & Pérez-Vázquez, E. (2023). Creación de un entorno de realidad virtual inmersiva para la comunicación e interacción social: estudio piloto en alumnado con trastorno del espectro autista. Revista de Educación a Distancia (RED), 23(73). 1-47. https://doi.org/10.6018/red.539141

Lorenzo, G., Lorenzo-Lledó, A. & Gilabert-Cerdá, A. (2024). Application of Robotics in Autistic Students: A Pilot Study on Attention in Communication and Social Interaction. Technology, Knowledge, and Learning https://doi.org/10.1007/s10758-023-09718-x

Moon, J., Choi, G. & Seo, J. (2023). Revisiting multimedia learning design principles in virtual reality-based learning environments for autistic individuals. Virtual Reality. https://doi.org/10.1007/s10055-023-00856-2

Mundy, P., Sullivan, L. & Mastergeorge, A. M. (2009). A parallel and distributed-processing model of joint attention, social cognition and autism. Autism Research, 2(1), 2–21. https://doi.org/10.1002/aur.61

Muse, A. & Baldwin, J. (2021). Quasi-experimental research design. In J. Barnes & D. Forde (Eds.), The encyclopedia of research methods in criminology and criminal justice (pp. 307–310). USA: Wiley.

Nevill, R., Hedley, D., Uljarevic, M., Sahin, E., Zadek, J., Butter, E. & Mulick, J. (2019). Language profiles in yoing children with autism spectrum disoder: a community sample using multiple assessment instruments. Autism, 23(1), 141-153. https://doi.org/10.1177/136236131772624

Pérez-Vázquez, E., Lorenzo, G., Lledó, A. & Lorenzo-Lledó, A. (2020). Evolution and Identification from a Bibliometric Perspective of the Use of Robots in the Intervention of Children with ASD. Technology, Knowledge, and Learning, 25(1), 83–114. https://doi.org/10.1007/s10758-019-09415-8

Puglisi, A., Capri, T., Pignolo, L., Gismondo, S., Chilà, P., Minutoli, R., Marino, F., Failla, C., Arnao, A., Tartarisco, G., Cerasa, A., & Pioggia, G. (2022). Social humanoid robots for children with autism spectrum disorders: A review of modalities, indications, and Pitfalls. Children,9(7), 953–967. https:// doi. org/ 10. 3390/ child ren90 70953

Richardson, A. E., Powers, M. E., & Bousquet, L. G. (2011). Video game experience predicts virtual, but not real navigation performance. Computers in Human Behavior, 27, 552-560. http://dx.doi.org/10.1016/j.chb.2010.10.003

Ricks, D.J., & Colton, M.B. (2010, May). Trends and considera-tions in robot-assisted autism therapy. In Robotics and Auto-mation (ICRA), IEEE (Institute of Electrical and ElectronicsEngineers) International Conference (pp. 4354–4359), IEEE:USA

Rogers, S. & Dawson, G. (2015). Modelo Denver de atención temprana para niños pequeños con autismo. Estimulación del lenguaje, el aprendizaje y la motivación social. Autismo Avila: España.

Soleiman, P., Moradi, H., Mehralizadeh, B., Ameri, H., Arriaga, R., Pouretemad, H., Baghbanzadeh, N., & Vahid, L. (2023). Fully robotic social environment for teaching and practicing affective interac-tion: Case of teaching emotion recognition skills to children with autism spectrum disorder, a pilot study. Frontiers in Robotics and AI,10(1), 1–15. https:// doi. org/ 10. 3389/ frobt. 2023. 10885 82

Takeo, T., Toshitaka, N. & Daisuke, N. (2007). Development application software on PDA for autistic disorder children. IPSJ SIG technical report, 12(1), 31-38.

Takata, K., Yoshikawa, Y., Muramatsu, T., Matsumoto, Y., Ishiguro, H., Mimura, M., & Kumazaki, H. (2023). Social skills training using multiple humanoid robots for individuals with autism spectrum conditions. Frontiers in Psychiatry,14, 1168837. https:// doi. org/ 10. 3389/ fpsyt. 2023. 11688 37

Talaat, F., Ali, Z., Mostafa, R. & El-Rashidy, N. (2024). Real-time facial emotion recognition model based on kernel autoencoder and convolutional neural network for autism children. Soft Computing. https://doi.org/10.1007/s00500-023-09477-y

Vanmarcke, S., Noens, I., Steyaert, J. & Wagemans, J. (2018). Change detection of meaningful objects in real-world scenes in adolescents with and without autism spectrum disorder. Autism, 22(6), 728-739. doi: 10.1177/1362361317702559

Vega-Malagón, G., Ávila-Morales, J., Vega-Malagón, A., Camacho-Calderón, N., Becerril-Santos, A. & Leo-Amador, G. (2014). Paradigmas en la investigación. Enfoque cuantitativo y cualitativo. European Scientific Journal,10(15), 523-528.10.19044/esj. 2014.v10n15p%p

Waller, D. (2000). Individual differences in spatial learning from computer-simulated environments. Journal of Experimental Psychology: Applied, 6, 307. http://dx.doi.org/10.1037/1076-898X.6.4.307.

Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M.S., Saxena, S., Yusuf, A., Shih, A. & Elsabbagh, M. (2022). Global Prevalence of Autism: A Systematic Review Update. Autism Research, 15(5), 778–790. https://doi.org/10.1002/aur.2696


Refbacks

  • There are currently no refbacks.


Indexación:

   
   
   

 -

ISSN: 1889-4208 / e-ISSN: 1989-4643  
  
 Este trabajo se autoriza con una licencia Creative Commons Asignación 4.0 Internacional.